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Abstract. Using results on soft-collinear factorization for inclusive B-meson decay distributions, a systematic
study of the partial B → Xsγ decay rate with a cut Eγ ≥ E0 on photon energy is performed. For values of
E0 below about 1.9 GeV, the rate can be calculated without reference to shape functions using a multi-scale
operator product expansion (MSOPE). The transition from the shape-function region to the MSOPE region
is studied analytically. The resulting prediction for the B → Xsγ branching ratio depends on three large
scales: mb,

√
mb∆, and ∆ = mb − 2E0. Logarithms associated with these scales are resummed at next-to-

next-to-leading logarithmic order. While power corrections in ΛQCD/∆ turn out to be small, the sensitivity
to the scale ∆ ≈ 1.1 GeV (for E0 ≈ 1.8 GeV) introduces significant perturbative uncertainties, which so far
have been ignored. The new theoretical prediction for the B → Xsγ branching ratio with Eγ ≥ 1.8 GeV is
Br(B → Xsγ) = (3.38+0.31

−0.42 ± 0.31)×10−4, where the first error is an estimate of perturbative uncertainties
and the second one reflects uncertainties in input parameters. With this cut (89+6

−7 ± 1)% of all events
are contained. When this fraction is combined with the previously best prediction for the total decay
rate, one obtains Br(B → Xsγ) = (3.30+0.31

−0.35 ± 0.17) × 10−4, with a somewhat less conservative estimate
of parametric uncertainties. The implications of larger theory uncertainties for new physics searches are
briefly explored with the example of the type-II two-Higgs-doublet model, for which the lower bound on
the charged-Higgs mass is reduced compared with previous estimates to approximately 200 GeV at 95%
confidence level.

1 Introduction

The inclusive, weak radiative decay B → Xsγ is the pro-
totype of all flavor-changing neutral current processes. In
the standard model, this process is mediated by loop di-
agrams containing W bosons and top (or lighter) quarks.
In extensions of the standard model, other heavy particles
propagating in loops cangive sizable contributions,which in
many cases can compete with those of the standard model.
As a result, measurements of the B → Xsγ rate and CP
asymmetry provide sensitive probes for new physics at the
TeV scale. In many cases, the fact that these measurements
agree with standard model predictions imposes non-trivial
constraints on the allowed parameter space.

Given the prominent role of B → Xsγ decay in search-
ing for physics beyond the standard model, it is of great
importance to have a precise prediction for its inclusive rate
and CP asymmetry in the standard model. This has been
achieved thanks to the combined effort of many theorists
over a period of several years [1]. The total inclusive rate is
known at next-to-leading order in renormalization-group
(RG) improved perturbation theory with a theoretical pre-
cision of about 10%. Currently, a major effort is underway
to improve this accuracy by calculating the dominant parts
of the next-to-next-to-leading corrections [2, 3].

While the total inclusive B → Xsγ decay rate can
be calculated using a conventional operator-product ex-
pansion (OPE) based on an expansion in logarithms and
inverse powers of the b-quark mass [4], the situation is more
complicated when a cut on the photon energy is applied.
In practice, experiments can only measure the high-energy
part of the photon spectrum, Eγ ≥ E0, where typically
E0 = 2 GeV (measured in the B-meson rest frame) or
slightly lower [5, 6]. Even if such a cut was not required
for experimental reasons, it would be needed to reduce the
photon background from B → Xsψ

(′) decays followed by
a radiative decay of the ψ(′) [7]. With Eγ restricted to be
close to the kinematic endpoint at MB/2 (neglecting the
kaon mass), the hadronic final state Xs is constrained to
have large energy EX ∼ MB but only moderate invariant
mass MX ∼ (MBΛQCD)1/2. In this kinematic region, im-
portant hadronic effects need to be taken into account. An
infinite set of leading-twist terms in the OPE need to be
resummed into a non-perturbative shape function, which
describes the momentum distribution of the b-quark inside
the B meson [8–10]. In addition, Sudakov double loga-
rithms arise near the endpoint of the photon spectrum,
which need to be resummed to all orders in perturbation
theory [11–13]. While these issues are now well understood
theoretically [14, 15], the presence of the shape function
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leads to an unavoidable element of hadronic uncertainty
and modeling, which is undesirable when the goal is to
probe for physics beyond the standard model.

Conventional wisdom says that, while shape-function
effects are important near the endpoint of the photon spec-
trum, these effects can be ignored as soon as the cutoffE0 is
lowered below about 1.9 GeV. This assumption is based on
phenomenological studies of shape-function effects using
various model functions, which have the unrealistic fea-
ture that the distribution function vanishes exponentially
for large light-cone momenta [16, 17]. In other words, it
has been implicitly assumed that there is an instantaneous
transition from the “shape-function region” of large non-
perturbative corrections to the “OPE region”, in which
hadronic corrections to the rate are suppressed by at least
two powers of ΛQCD/mb. As a result, the preferred strategy
has been to encourage experimenters to lower the photon-
energy cut to a valueE0 ≤ 1.9 GeV, and then to employ the
conventional OPE for the calculation of the rate, ignoring
shape-function effects.

In this paper we show that this strategy is based on a
misconception. Our work is motivated by two considera-
tions. First, is has recently been shown that the asymptotic
behavior of B-meson distribution functions such as the
shape function is not exponential, but rather governed by
radiative tails exhibiting a slow, power-like fall-off [14,18].
One should therefore not exclude the possibility of a sig-
nificant radiation tail in the case of the B → Xsγ photon
spectrum, meaning that more events than predicted by
existing models could be located at low photon energy.
Fits to experimental data in the low-energy part of the
spectrum, which are based on such models, should thus
be taken with caution. Secondly, it has been our desire for
a long time to find an analytic way to study the transi-
tion from the shape-function region to the OPE region. If
it were true that shape-function effects become irrelevant
once the cutoff E0 is lowered below 1.9 GeV, one should
be able to see this analytically using some form of a short-
distance expansion. We show that this expansion indeed
exists, and that it involves three different short-distance
scales. In addition to the hard scale mb, an intermediate
“hard-collinear” scale

√
mb∆ corresponding to the typical

invariant mass of the hadronic final stateXs, and a low scale
∆ = mb − 2E0 related to the width of the energy window
overwhich themeasurement is performed, becomeof crucial
importance. The physics associated with these scales can
be disentangled using recent results on soft-collinear factor-
ization theorems derived in the framework of effective field
theory [14,15]. A systematic treatment consists of match-
ing QCD onto soft-collinear effective theory (SCET) [19]
in a first step, in which hard quantum fluctuations are in-
tegrated out. In a second step, hard-collinear modes are
integrated out by matching SCET onto heavy-quark effec-
tive theory (HQET) [20]. Ultimately, the precision of the
theoretical calculations is determined by the value of the
lowest short-distance scale ∆, which in practice is of or-
der 1 GeV or only slightly larger. The theoretical accuracy
that can be reached is therefore not as good as in the case
of a conventional heavy-quark expansion applied to the B

system, but more likely it is similar to (if not worse than)
the accuracy reached in the description of the inclusive
hadronic τ decay rate Rτ [21]. However, while the ratio
Rτ is known to order α3

s , the B → Xsγ branching ratio is
currently only known through order αs.

While we are aware that this conclusion may come as a
surprise to many practitioners in the field of flavor physics,
we believe that it is an unavoidable consequence of the anal-
ysis presented in this paper. Not surprisingly, then, we find
that the error estimates for the partialB → Xsγ branching
ratio in the literature are too optimistic. Since there are
unknown α2

s (∆) corrections at the low scale ∆ ∼ 1 GeV,
we estimate the present perturbative uncertainty in the
B → Xsγ branching ratio with E0 in the range between
1.6 and 1.8 GeV to be of order 10%. In addition, there are
uncertainties due to other sources, such as the b- and c-
quark masses. The combined theoretical uncertainty is of
order 15%. While this is a rather pessimistic conclusion, we
stress that the uncertainty is limited by unknown, higher-
order perturbative terms, not by non-perturbative effects,
which we find to be under good control. (This is similar to
the case of Rτ .) Therefore, there is room for a reduction
of the error by means of well-controlled perturbative cal-
culations.

In Sect. 2, we discuss the QCD factorization formula
for the partial B → Xsγ decay rate with a cut Eγ ≥ E0
on photon energy, valid at leading power in the heavy-
quark expansion. Contributions associated with the hard,
hard-collinear, and soft scales are factorized into a hard
function Hγ , a jet function J , and a shape function Ŝ. Sin-
gle and double (Sudakov) logarithms are systematically
resummed to all orders in perturbation theory. The RG
evolution of the shape function is studied in Sect. 3, where
we present the exact solution to its evolution equation in
momentum space. Our main results are derived in Sect. 4,
where we show how the convolution integral over the shape
function in the factorization formula can be calculated us-
ing a local OPE, provided that the scale ∆ = mb − 2E0
is numerically large compared with ΛQCD. Section 5 dis-
cusses how to eliminate the HQET parameters mb and λ1
defined in the pole scheme, which enter the theoretical ex-
pressions, in terms of physical parameters defined in the
so-called “shape-function scheme” [14]. The calculation of
the decay rate is completed in Sect. 6, where we add con-
tributions that are power-suppressed in the heavy-quark
expansion. For these small corrections, the scale separa-
tion we achieve is only approximate and misses some yet
unknown terms of order α2

s ln2(∆/mb). In Sect. 7, we show
that by considering ratios of decay rates one may separate
the short-distance physics contained in the hard function
Hγ from the physics associated with the intermediate and
low scales. For instance, at leading power in∆/mb the ratio
of the B → Xsγ branching ratio in a new physics model
relative to that in the standard model can be calculated
without any sensitivity to scales less than the hard scale
µh ∼ mb, and the same is true for the directCP asymmetry.
In other cases, at leading power some ratios are insensitive
to the Wilson coefficients in the effective weak Hamiltonian
and thus to new physics. Examples are the average photon
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energy 〈Eγ〉, and the ratio of the B → Xsγ decay rate
with Eγ ≥ E0 normalized to the total rate. The latter ra-
tio is particularly interesting, since it can be used to make
contact between a simple, fully inclusive rate calculation
and our more sophisticated analysis of multi-scale effects.
Our numerical results are presented in Sect. 8, followed by
a summary and conclusions.

2 QCD factorization theorem

Recent results on the factorization of hard, hard-collinear,
and soft contributions to inclusive B-meson decay distri-
butions [14, 15] allow us to obtain a QCD factorization
formula for the integrated B → Xsγ decay rate with a cut
Eγ ≥ E0 on photon energy. In the region of large E0, the
leading contribution to the rate can be written in the form

ΓB̄→Xsγ(E0)

=
G2

Fα

32π4 |VtbV
∗
ts|2 (1 + εnp)m2

b(µh) |Hγ(µh)|2

×U1(µh, µi)
∫ ∆E

0
dP+ (MB − P+)3

×
∫ P+

0
dω̂ mb J

(
mb(P+ − ω̂), µi

)
Ŝ(ω̂, µi)

+power corrections, (1)

where ∆E = MB − 2E0 is twice the width of the win-
dow in photon energy over which the measurement of the
decay rate is performed. In the prefactor, α is the fine-
structure constant normalized at q2 = 0 [22]. The variable
P+ = EX − |P X | is the “plus component” of the four-
momentum of the hadronic final state Xs, which is related
to the photon energy by P+ = MB − 2Eγ . The factor
(MB −P+)3 under the integral thus equals 8E3

γ , where two
powers of Eγ come from the squared matrix element of
the effective weak Hamiltonian, and one factor comes from
phase space. The hadronic invariant mass of the final state
is M2

X = MBP+. The endpoint region of the photon spec-
trum is defined by the requirement that P+ ≤ ∆E � MB ,
in which case Pµ is called a hard-collinear momentum [23].
Power corrections to the expression above will be analyzed
later; however, the leading non-perturbative corrections to
the total decay rate have already been factored out in (1)
and included in the parameter [4] (see Table 1 in Sect. 8
for a list of input parameters)

εnp =
λ1 − 9λ2

2m2
b

= −(3.1 ± 0.5)% . (2)

The factorization formula (1) was first presented in [12].
What is new is that we now have a systematic effective
field-theory technology to compute the functions Hγ and
J order by order in perturbation theory, and to control their
scale dependence in momentum space (not moment space).
Also, it is in principle possible to include power-suppressed
terms in the heavy-quark expansion. In the factorization
formula, µh ∼ mb is a hard scale, while µi ∼√mbΛQCD is

an intermediate hard-collinear scale of order the invariant
mass of the hadronic final state. The precise values of these
matching scales are irrelevant, since the rate is formally
independent of µh and µi. The hard corrections captured
by the function Hγ(µh) result from the matching of the
effective weak Hamiltonian of the standard model (or any
of its extensions) onto a leading-order current operator of
SCET. It is defined by the relation

Hb→sγ
eff → GF√

2
VtbV

∗
ts

e

2π2 Eγ mb(µh)Hγ(µh) ε∗µ(q)

× [ξ̄ Whc γ
µ
⊥(1 − γ5)hv

]
(µh) + . . . , (3)

where ε(q) is the transverse photon polarization vector, and
the dots represent power-suppressed contributions from
higher-dimensional SCET operators. The result is propor-
tional to the photon energy, Eγ = v · q, defined in the
B-meson rest frame. (Here v is the 4-velocity of the B me-
son.) The fields hv and ξ represent the soft heavy quark
and the hard-collinear strange quark, respectively, andWhc

is a Wilson line. At tree level, only the dipole operator
Q7γ and the four-quark penguin operators Q5 and Q6 in
the effective weak Hamiltonian give a non-zero contribu-
tion to Hγ , which is equal to the “effective” coefficient
Ceff

7γ = C7γ − 1
3 C5 − C6. (We use the conventions of [24]

for the operators and Wilson coefficients in the effective
weak Hamiltonian.) At next-to-leading order, the result
reads (with CF = 4/3)

Hγ(µh)

= Ceff
7γ (µh)

[
1

+
CFαs(µh)

4π

(
−2 ln2 mb

µh
+ 7 ln

mb

µh
− 6 − π2

12

)
+ εew

]

+Ceff
8g (µh)

CFαs(µh)
4π

×
(

− 8
3

ln
mb

µh
+

11
3

− 2π2

9
+

2πi
3

)

+C1(µh)
CFαs(µh)

4π

×
(

104
27

ln
mb

µh
+ g(z) + εCKM

[
g(0) − g(z)

])
+εpeng . (4)

The coefficient Ceff
7γ (µh) of the electromagnetic dipole op-

erator is required with next-to-leading order accuracy [25],
while the remaining coefficients can be calculated at leading
logarithmic order. Explicit expressions for these coefficients
can be found, e.g., in [17, 25]. The terms in the third row
arise from charm-quark and up-quark penguin contractions
of the current–current operators Qc,u

1 . These contributions
depend on the small ratio

εCKM = −VubV
∗
us

VtbV ∗
ts

= λ2(ρ̄− iη̄)
[
1 + λ2(1 − ρ̄− iη̄) + O(λ4)

]
. (5)
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The variable z = (mc/mb)2 denotes the ratio of quark
masses relevant to the charm loop, and

g(z) = − 833
162

− 20πi
27

+
8π2

9
z3/2

+
2z
9
[
48 − 5π2− 36ζ3 + (30π − 2π3)i

+(36 − 9π2 + 6πi) ln z +(3 + 6πi) ln2 z + ln3 z
]

+
2z2

9
[
18 + 2π2 − 2π3i + (12 − 6π2) ln z

+6πi ln2 z + ln3 z
]

+
z3

27
[−9 − 14π2 + 112πi + (182 − 48πi) ln z

−126 ln2 z
]
+ . . . (6)

are the first few terms in the expansion of the penguin func-
tion [26], whose exact expression (in the form of parameter
integrals) can be found in [27]. The imaginary parts in (4)
and (6) are strong-interaction phases, which in conjunction
with CP -violating weak phases contained in the parame-
ter εCKM or in potential new physics contributions to the
Wilson coefficients can induce a non-zero CP asymmetry
in B → Xsγ decays [28,29]. The term

εew = δew +
α(µh)
αs(µh)

C
(em)
7γ (µh)
Ceff

7γ (µh)
≈ −1.5% (7)

accounts for electroweak matching corrections at the weak
scale [30] and logarithmically enhanced electromagnetic
effects affecting the evolution of the Wilson coefficients [17,
31]. Finally, the term εpeng ≈ 0.2% includes the effects of
penguin contractions of operators other than Qc,u

1 [27],
which are numerically negligible but are included here for
completeness. In the factorization formula (1), the hard
function is multiplied by the running b-quark mass

mb(µh) = mb(mb)
[
1 +

3CFαs(µh)
2π

ln
mb

µh
+ . . .

]
(8)

defined in the MS scheme, which is part of the electromag-
netic dipole operator Q7γ . On the other hand, the scheme
to be used for the quark masses entering the ratio z in the
penguin function g(z) is not specified at next-to-leading or-
der [7]. Since the matching is performed at a hard scale µh,
the charm-quark mass should be a running mass mc(µh),
while mb enters either as the mass in the b-quark propaga-
tor or via the values of external momenta. For simplicity,
we take z = [mc(µh)/mb(µh)]2 as a ratio of running quark
masses evaluated at the same scale, which has the advan-
tage that this quantity is RG invariant.

The jet function J
(
mb(P+ − ω̂), µi

)
in (1) describes the

physics of the final-state hadronic jet. At next-to-leading
order in perturbation theory, it is given by the expres-
sion [14,15]

mb J
(
mb(P+ − ω̂), µi

)
= δ(P+ − ω̂)

[
1 +

CFαs(µi)
4π

(
7 − π2)] (9)

+
CFαs(µi)

4π

[
1

P+ − ω̂

(
4 ln

mb(P+ − ω̂)
µ2

i
− 3
)][µ2

i /mb]

∗
.

The star distributions are generalized plus distributions
defined as [32]

∫ z

≤0
dxF (x)

[
1
x

][u]

∗

=
∫ z

0
dx

F (x) − F (0)
x

+ F (0) ln
z

u
,

∫ z

≤0
dxF (x)

[
ln(x/u)

x

][u]

∗

=
∫ z

0
dx

F (x) − F (0)
x

ln
x

u
+
F (0)

2
ln2 z

u
, (10)

where F (x) is a smooth test function. The perturbative
expansion of the jet function can be trusted as long as
µ2

i ∼ mb∆ with ∆ ∼ Pmax
+ − 〈ω̂〉 
 mb − 2E0 � MB .

By quark–hadron duality, only the maximum values of
kinematic variables such as P+, which are integrated over
phase space, matter for the calculation of inclusive decay
rates [4]. Note that the “natural” choices µh ∝ mb and
µ2

i ≡ mb µ̃i with µ̃i independent of mb remove all reference
to the b-quark mass (other than in the arguments of running
coupling constants) from the factorization formula (1).

The shape function Ŝ(ω̂, µi) parameterizes our igno-
rance about the soft physics associated with bound-state
effects inside the B meson [8,9]. Its naive interpretation is
that of a parton distribution function, governing the dis-
tribution of the light-cone component k+ of the residual
momentum k = pb −mbv of the b quark inside the heavy
meson. Once radiative corrections are included, however,
a probabilistic interpretation of the shape function breaks
down [14]. For convenience, the shape function is renor-
malized in (1) at the intermediate hard-collinear scale µi
rather than at a hadronic scale µhad. This removes any un-
certainties related to the evolution from µi to µhad. Since
the shape function is universal, all that matters is that it
is renormalized at the same scale when comparing differ-
ent processes.

The last ingredient in the factorization formula (1) is
the RG evolution function U1(µh, µi), which describes the
evolution of the hard function |Hγ |2 from the high matching
scale µh down to the intermediate scale µi, at which the jet
and shape functions are renormalized. The exact expression
for this quantity follows from

lnU1(µh, µi) (11)

= 2S(µh, µi) − 2aΓ (µh, µi) ln
mb

µh
− 2aγ′(µh, µi) ,
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where the various functions on the right-hand side are the
solutions to the partial differential equations (the Sudakov
exponent S should not be confused with the shape func-
tion Ŝ)

d
d lnµ

S(ν, µ) = −Γcusp
(
αs(µ)

)
ln
µ

ν
,

d
d lnµ

aΓ (ν, µ) = −Γcusp
(
αs(µ)

)
,

d
d lnµ

aγ′(ν, µ) = −γ′(αs(µ)
)
, (12)

with initial conditions S(ν, ν) = aΓ (ν, ν) = aγ′(ν, ν) =
0 at µ = ν. Here Γcusp is the universal cusp anomalous
dimension for Wilson loops with light-like segments [33],
which has recently been calculated to three-loop order [34],
and γ′ enters the anomalous dimension of the leading-order
SCET current operators containing a heavy quark and a
hard-collinear quark with large energy E, which takes the
form [19,23]

γJ(E, µ) = −Γcusp
(
αs(µ)

)
ln

µ

2E
+ γ′(αs(µ)

)
. (13)

As explained in Appendix A, a conjecture for the two-loop
expression for γ′ can be deduced using results from the lit-
erature on deep-inelastic scattering [35–37]. The evolution
equations (12) are solved in the standard way by writing
d/d lnµ = β(αs) d/dαs, where β(αs) = dαs/d lnµ is the
QCD β function. This yields the exact solutions

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)
β(α)

α∫
αs(ν)

dα′

β(α′)
,

aΓ (ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)
β(α)

, (14)

and similarly for the function aγ′ . The perturbative ex-
pansions of the anomalous dimensions and the resulting
expressions for the evolution functions valid through order
αs are collected in Appendix A.

As written in (1), the decay rate is sensitive to non-
perturbative hadronic physics via its dependence on the
shape function. This sensitivity is unavoidable as long as
the scale ∆ = mb − 2E0 is a hadronic scale, corresponding
to the endpoint region of the photon spectrum above, say,
2 GeV. The properties of the B → Xsγ decay rate and
photon spectrum in this region will be discussed in detail
elsewhere. Here we are interested in a situation where E0 is
lowered out of the shape-function region, such that∆ can be
considered large compared with ΛQCD. For orientation, we
note that with mb = 4.7 GeV and the cutoff E0 = 1.8 GeV
employed in a recent analysis by the Belle Collaboration [6]
one gets∆ = 1.1 GeV. ForE0 = 1.6 GeV (a reference value
adopted in [7, 27], which at present is below what can be
achieved experimentally) one would obtain ∆ = 1.5 GeV.
As mentioned in the Introduction, in all previous analyses
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Fig. 1. Dependence of the three scales µh = mb (solid), µi =√
mb∆ (dashed), and µ0 = ∆ (dash-dotted) on the cutoff E0,

assuming mb = 4.7 GeV. The gray area at the bottom shows
the domain of non-perturbative physics. The light gray band
in the center indicates the region where the MSOPE should
be applied

of the B → Xsγ decay rate it was assumed that, once E0
is taken below about 1.9 GeV, the sensitivity to hadronic
physics essentially disappears, and the rate can be com-
puted using a conventional OPE at the scalemb. The main
point of the present work is to show that this assumption
cannot be justified, and that estimating theoretical un-
certainties under the hypothesis that the expansion is in
powers of αs(mb) and ΛQCD/mb underestimates the mag-
nitude of the true theoretical errors. As we will show, for
values of E0 outside the shape-function region there are
three relevant mass scales in the problem besides ΛQCD.
They are the hard scalemb, the hard-collinear scale

√
mb∆,

and the low scale ∆ itself. The values of these scales as a
function of the photon-energy cutoffE0 are shown in Fig. 1.
The transition from the shape-function region to the region
where a conventional OPE can be applied is not abrupt
but proceeds via an intermediate region, in which a short-
distance analysis based on a multi-scale OPE (MSOPE)
can be performed. The transition from the shape-function
region into the MSOPE region occurs when the scale∆ be-
comes numerically (but not parametrically) large compared
with ΛQCD. Then terms of order αn

s (∆) and (ΛQCD/∆)n,
which are non-perturbative in the shape-function region,
gradually become decent expansion parameters. Only for
very low values of the cutoff (E0 < 1 GeV or so) it is
justified to treat ∆ and

√
mb∆ as scales of order mb.

Separating the contributions associated with these
scales requires a multi-step procedure, which we develop
in the present work. The first step, the separation of the
hard scale from the intermediate scale, has already been
achieved in (1). To proceed further we use two crucial recent
developments. First, integrals of smooth weight functions
F (ω̂) with the shape function Ŝ(ω̂, µ) can be expanded in a
series of forward B-meson matrix elements of local HQET
operators, provided that the integration domain is large
compared with ΛQCD [14,15]. The reason is that the shape
function can be written as the discontinuity of a two-point
correlator in momentum space, and thus weighted integrals
over Ŝ can be turned into contour integrals in the complex
plane along a circle with radius set by the upper integra-
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tion limit on ω̂ (more precisely, ω̂ − Λ̄). Specifically, the
expansion takes the form [14]

∫ ∆+Λ̄

0
dω̂ Ŝ(ω̂, µ)F (ω̂)

= K
(F )
0 (∆,µ) +K

(F )
2 (∆,µ)

(−λ1)
3∆2 + . . . , (15)

whereK(F )
n are calculable Wilson coefficient functions, Λ̄ =

mB −mb and λ1 are HQET parameters (which for the time
being are defined in the pole scheme) [20], and the dots
represent terms of order (ΛQCD/∆)3 or higher. Note that
with ∆ = mb − 2E0 as defined above we have ∆ + Λ̄ =
MB − 2E0 = ∆E , which coincides with the upper limit for
the integration over ω̂ in (1). The perturbative expansions
of the coefficient functions K(F )

n can be trusted as long
as µ ∼ ∆. In order to complete the scale separation, it
is therefore necessary to evolve the shape function in (1)
from the intermediate scale µi ∼ √

mb∆ down to a scale
µ0 ∼ ∆. This can be achieved using the analytic solution to
the integro-differential RG evolution equation for the shape
function in momentum space obtained in [14, 18]. These
manipulations will be discussed in detail in the following
two sections.

As a final comment, we stress that the main purpose of
performing the scale separation using the MSOPE is not
that this allows us to resum Sudakov logarithms by solving
RG equations. Indeed, the “large logarithm” ln(mb/∆) ≈
1.5 is only parametrically large, but not numerically. What
is really important is to disentangle the physics at the
low scale µ0 ∼ ∆, which is “barely perturbative”, from
the physics associated with higher scales, where a short-
distance treatment is on much safer grounds. It would be
wrong to pretend that all perturbative effects in B → Xsγ
decays are associated with the short-distance scale mb 
ΛQCD. The MSOPE allows us to distinguish between the
three coupling constants αs(mb) ≈ 0.22, αs(

√
mb∆) ≈

0.29, and αs(∆) ≈ 0.44 (for ∆ = 1.1 GeV), which are
rather different despite the fact that there are no numeri-
cally large logarithms in the problem. Given the values of
these couplings, we expect that scale separation between
∆ andmb is as important as that betweenmb and the weak
scale MW .

3 Evolution of the shape function

The renormalized shape function obeys the integro-differ-
ential RG evolution equation

d
d lnµ

Ŝ(ω̂, µ) = −
∫

dω̂′ γS(ω̂, ω̂′, µ) Ŝ(ω̂′, µ) , (16)

where the anomalous dimension can be written in the form

γS(ω̂, ω̂′, µ) = −2Γcusp
(
αs(µ)

) [ 1
ω̂ − ω̂′

][µ]

∗
+2γ

(
αs(µ)

)
δ(ω̂ − ω̂′) . (17)

This form was found in two recent one-loop calculations of
the ultra-violet poles of non-local HQET operators [14,15].
A brief history of previous investigations of the anomalous-
dimension kernel can be found in the first reference. The
structure of (17) was derived first by Grozin and Korchem-
sky [38], who also computed the anomalous dimension and
argued that the functional form of γS(ω̂, ω̂′, µ) shown above
holds to all orders in perturbation theory. A conjecture for
the two-loop expression of the anomalous dimension γ is
presented in Appendix A.

The exact solution to (16) can be found using a tech-
nique developed in [18]. The equation is solved by the
remarkably simple form

Ŝ(ω̂, µi) = U2(µi, µ0)
e−γEη

Γ (η)

∫ ω̂

0
dω̂′ Ŝ(ω̂′, µ0)

µη
0(ω̂ − ω̂′)1−η

,

(18)
where

lnU2(µi, µ0) = 2S(µ0, µi) + 2aγ(µ0, µi) ,

η = −2aΓ (µ0, µi) . (19)

The functions S and aΓ have been defined in (12). Simi-
larly, the function aγ is defined in complete analogy with
aγ′ , but with γ′ replaced with the anomalous dimension
γ in (17). Explicit equations for these functions are given
in Appendix A. The next-to-leading logarithmic approxi-
mation to (18) was first derived in [14]. We note that a
similar (but not identical) result was found in [39] based on
a one-loop calculation of the anomalous-dimension kernel.

Relation (18) accomplishes the evolution of the shape
function from the intermediate scale down to the low scale
µ0 ∼ ∆. When this result is inserted into the factorization
formula (1), it is possible to perform the integrations over
P+ and ω̂ analytically, leaving the integration over ω̂′ until
the end. Using the expression for the jet function in (9),
we find that the leading contribution to the decay rate is
given by

Γ leading
B̄→Xsγ

(E0)

=
G2

Fα

32π4 |VtbV
∗
ts|2 (1 + εnp)m2

b(µh) |Hγ(µh)|2

× U1(µh, µi)U2(µi, µ0)
e−γEη

Γ (1 + η)
I(E0) , (20)

where

I(E0) =
∫ ∆E

0
dω̂ Ŝ(ω̂, µ0) (MB − ω̂)3

(
∆E − ω̂

µ0

)η

(21)

×
[
1 +

CFαs(µi)
4π

J (∆E − ω̂)
]
p3

(
η,
∆E − ω̂

MB − ω̂

)
.

The function p3(η, δ) is a special case of the polynomial

pn(η, δ) =
n∑

k=0

(
n
k

) η (−δ)k

k + η
⇒ (22)

p3(η, δ) = 1 − 3ηδ
1 + η

+
3ηδ2

2 + η
− ηδ3

3 + η
.
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The next-to-leading order corrections from the jet function
are encoded in the operator

J (∆) = 2
(

ln
mb∆

µ2
i

+ ∂η

)2

−[4h(η) + 3
](

ln
mb∆

µ2
i

+ ∂η

)
(23)

+2h2(η) + 3h(η) − 2h′(η) + 7 − 2π2

3
,

where

h(η) = ψ(η) + γE +
1
η

= ψ(1 + η) + γE (24)

is the harmonic function generalized to non-integer argu-
ment, and the derivatives ∂η = ∂/∂η in (23) act on the
function p3(η, δ) in (21). Note that this result has a smooth
limit for µ0 → µi, in which case η → 0, U2(µi, µ0) → 1,
h(η) → 0, h′(η) → π2/6, and we obtain an expression
equivalent to the original result in (1).

4 Short-distance expansion of the
convolution integral

The remaining task is to expand the integral over the shape
function in (21) using an OPE, relating it to forward B-
meson matrix elements of local HQET operators, as in-
dicated in (15). As explained in [14], this can be done
whenever ∆ = ∆E − Λ̄ = mb − 2E0 is large compared
with ΛQCD. For a given weight function F , the matching
coefficients K(F )

n are determined in the usual way by com-
puting the integral in perturbation theory, expanding in
powers of external momenta, and writing the answer as a
linear combination of Wilson coefficients multiplying the
matrix elements of local HQET operators. This matching
calculation can be done using free partons in the external
states and employing any infra-red regulator scheme that
is convenient. We use on-shell external heavy-quark states
with residual momentum k chosen such that v · k = 0. In
this case, the perturbative expression for the renormalized
shape function at one-loop order is [14,15]

Ŝparton(ω̂, µ0) = δ(ω̂ − Λ̄+ n · k)
(

1 − CFαs(µ0)
π

π2

24

)

−CFαs(µ0)
π

(25)

×
[

1
ω̂ − Λ̄+ n · k

(
2 ln

ω̂ − Λ̄+ n · k
µ0

+ 1
)][µ0]

∗
.

Using this result one can perform the integral over the shape
function in (21) analytically. The answer is then Taylor-
expanded in powers of n · k. The terms up to second order
in this expansion are identified with the forward B-meson
matrix elements of the operators h̄h, h̄ in ·Dh, and h̄ (in ·
D)2h, respectively, where nµ = (1, 0, 0, 1) is a light-like

vector. The values of these matrix elements are given by 1,
0, and −λ1/3 [8]. They do not receive radiative corrections
in the regularization scheme adopted here. Operators of
dimension six or higher would mix under renormalization.
Also, in order to find their Wilson coefficients it would be
necessary to perform matching calculations with external
gluon states. However, it will be sufficient for all practical
purposes to truncate the expansion after the second term,
keeping only operators of dimension up to five. The result
of this calculation is

I(E0) = m3
b

(
∆

µ0

)η

×
[
1 +

CFαs(µi)
4π

J (∆) +
CFαs(µ0)

4π
S(∆)

]

×
[
p3

(
η,

∆

mb

)
+
η(η − 1)

2
(−λ1)
3∆2 + . . .

]
, (26)

where J (∆) has been defined in (23), and

S(∆) = −4
(

ln
∆

µ0
+ ∂η

)2

+4 [2h(η) − 1]
(

ln
∆

µ0
+ ∂η

)

−4h2(η) + 4h(η) + 4h′(η) − 5π2

6
. (27)

We have restricted ourselves to include only the leading
power correction of order λ1/∆

2, dropping terms that are
suppressed by additional powers of ∆/mb. This is neces-
sary for consistency, because there exist other, unknown
1/mb and 1/m2

b corrections from subleading shape func-
tions, i.e., non-local HQET operators containing additional
derivatives or insertions of soft gluon fields [40]. The λ1/∆

2

term is obtained by acting with (−λ1/6) ∂2
∆ on the leading-

order term. According to (26), its effect can be included by
simply adding a power correction to the function p3(η, δ).

The reader may ask why such an “enhanced” power
correction was not found in previous analyses of the decay
B → Xsγ, or of the related semileptonic decayB → Xu l ν.
Common lore is that non-perturbative corrections to in-
clusive decay rates scale like (ΛQCD/mb)2 and thus are
very small. The reason is that so far power corrections in
the OPE were computed at tree level only (an exception
being [41]). While the terms displayed above have a non-
zero leading-order coefficient after RG resummation, they
vanish at tree level if the result is expanded in fixed-order
perturbation theory. Explicitly, we find to first order in αs

I(E0)
m3

b

� (−λ1)
3∆2

CFαs

4π

(
−2 ln

mb

∆
+

3
2

)
. (28)

This effect would have shown up in the conventional heavy-
quark expansion, if power corrections had been computed
beyond the tree approximation.

Even though it is parametrically larger than the non-
perturbative corrections from the conventional OPE in (2),
the enhanced power correction in (26) remains small for
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Fig. 2. Size of the enhanced power correction proportional to
λ1/∆

2 in (26) relative to the leading term, as a function of
∆ = mb − 2E0

all relevant values of ∆. This is illustrated in Fig. 2, which
shows the size of the power correction proportional to λ1 to
the function I(E0) relative to the leading-order term. In the
region of “perturbative” values of∆, where the MSOPE can
be trusted, the effect amounts to a reduction of the decay
rate by less than 5%. It also follows that subleading power
corrections of order λ1/(mb∆) can safely be neglected.

Equation (26), combined with (20), is our main result.
Its numerical implications will be analyzed later, after in-
cluding additional, small power-suppressed terms. A few
comments are in order already at this point.
1. The rate in (20) is formally independent of the three
matching scales, at which we switch from QCD to SCET
(µh), from SCET to HQET (µi), and finally at which the
non-local HQET matrix element (the shape-function inte-
gral) is expanded in a series of local operators (µ0). The
explicit perturbative expressions for the functions Hγ(µh)
in (4), J (∆) in (23), and S(∆) in (27) suggest that the “nat-
ural” choices for the three scales are µh = mb, µi =

√
mb∆,

and µ0 = ∆, as this removes all logarithms from these ex-
pressions. The latter two assignments are supported by the
observation that, for a typical value η ≈ 0.25, the coeffi-
cient function J (∆) vanishes near µi = 1.08

√
mb∆, while

|S(∆)| is minimized near µ0 = 1.16∆. Below, we will adopt
the “natural” choices as our default values. In practice, a
residual scale dependence arises because of the truncation
of the perturbative expansion. Varying the three matching
scales about their default values provides some information
about unknown higher-order perturbative terms .
2. In the limit where the intermediate and low matching
scales µi and µ0 are set equal to the hard matching scale
µh, our result reduces to the conventional formula used in
previous analyses of the B → Xsγ decay rate. However,
this choice cannot be justified on physical grounds .
3. After RG resummation the decay rate has a non-trivial
dependence on the photon-energy cutE0 already at leading
order in RG-improved perturbation theory and at leading
power in ∆/mb, as reflected by the appearance of ∆η in
(26). Apart from small logarithmic corrections encoded in
the functions J and S, it follows that formb−2Eγ  ΛQCD
the photon spectrum exhibits a radiation tail, dΓ/dEγ ∝
1/(mb − 2Eγ)1−η, which has a slow fall-off with energy .
4. In (20) we have accomplished a complete resumma-
tion of (parametrically) large logarithms at next-to-next-

to-leading logarithmic order in RG-improved perturbation
theory, which is necessary in order to calculate the de-
cay rate with O(αs) accuracy. This is highly non-trivial
in cases where Sudakov double logarithms are present.
Specifically, it means that terms of the form αn

s L
k with

k = (n − 1), . . . , 2n and L = ln(mb/∆) are correctly re-
summed to all orders in perturbation theory. At a given
order αn

s , there are (n + 2) such terms. To the best of
our knowledge, a complete resummation at next-to-next-
to-leading order has never been achieved before. For ease
of comparison with the results of other authors, we pro-
vide in Appendix B an expansion of our result to second
order in αs, deriving the coefficients of the terms α2

sL
k with

k = 1, 2, 3, 4 .
5. Finally, we stress that the various next-to-leading order
corrections in the expression for the decay rate obtained
from (20) and (26) should be consistently expanded to or-
der αs before applying our results to phenomenology. Such
next-to-leading order terms are contained in the functions
Ceff

7γ (µh), mb(µh), Hγ(µh), U1(µh, µi), U2(µi, µ0), η, and
I(E0). For instance, one should expand

e−γEη

Γ (1 + η)
=

e−γEη0

Γ (1 + η0)
(29)

×
[
1 − Γ0

β0

(
Γ1

Γ0
− β1

β0

)
αs(µ0) − αs(µi)

4π
h(η0) + . . .

]
,

where η0 = Γ0
β0

ln αs(µ0)
αs(µi)

is the leading-order expression
for η (see Appendix A). In practice, these expansions are
readily automatized.

5 Elimination of pole-scheme parameters

The expression for the function I(E0) in (26) has been de-
rived under the implicit assumption that the b-quark mass
mb, the related parameter ∆ = mb − 2E0, and the HQET
parameter λ1 are defined in the on-shell scheme. While this
is most convenient for performing calculations using heavy-
quark expansions, it is well known that HQET parameters
defined in the pole scheme suffer from infra-red renormalon
ambiguities [42–45]. As a result, the perturbative expan-
sion in (26) would not be well behaved. It is thus necessary
to replace the pole mass mb and the HQET parameter λ1
in favor of some physical, short-distance parameters.

For our purposes, the “shape-function scheme” defined
in [14] provides for a particularly suitable definition of the
heavy-quark mass and kinetic energy. A look at (21) shows
that the pole mass actually never enters the expression
for the decay rate. Rather, a factor (MB − ω̂)3 appears
under the integral over the shape function, which can be
traced back to the factor (MB − P+)3 = 8E3

γ in the orig-
inal expression for the rate in (1). Roughly speaking, it
is the average value of ω̂ that determines the value of the
difference (MB − ω̂). This observation is the basis of the
shape-function scheme. The idea is that a good estimate
of the right-hand side of (21) can be obtained using the
mean-value theorem, i.e., by replacing ω̂ with its mean
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value defined as

〈ω̂〉∆ =

∫∆E

0 dω̂ ω̂ Ŝ(ω̂, µ0)∫∆E

0 dω̂ Ŝ(ω̂, µ0)

≡ Λ̄(∆,µ0) = MB −mb(∆,µ0) . (30)

Heremb(∆,µ0) is the running shape-function mass defined
in [14], which depends on a hard cutoff ∆ in addition to
the renormalization scale µ0. The quantity∆ in the shape-
function scheme is defined by the implicit equation

∆ = ∆E − Λ̄(∆,µ0) = mb(∆,µ0) − 2E0 . (31)

(For simplicity, we write ∆ instead of the more correct
notation ∆(∆,µ0).) Likewise, we define a kinetic-energy
parameter µ2

π(∆,µ0) via the variance of ω̂,

〈ω̂2〉∆ −〈ω̂〉2∆ =

∫∆E

0 dω̂ ω̂2 Ŝ(ω̂, µ0)∫∆E

0 dω̂ Ŝ(ω̂, µ0)
−〈ω̂〉2∆ ≡ µ2

π(∆,µ0)
3

.

(32)
The shape-function scheme provides a physical, short-dis-
tance definition of mb and µ2

π, which can be related to any
other short-distance definition of these parameters using
perturbation theory. The explicit form of these relations
for some common renormalization schemes can be found
in [14]. Here we need the relations to the parameters defined
in the pole scheme. They are

mpole
b = mb(∆,µ0)

+∆
CFαs(µ0)

π

×
[(

1 − 2 ln
∆

µ0

)
+

2
3
µ2

π(∆,µ0)
∆2 ln

∆

µ0

]
+ . . . ,

−λ1 = µ2
π(∆,µ0)

[
1 +

CFαs(µ0)
π

(
−3 ln

∆

µ0
− 1

2

)]

+ 3∆2 CFαs(µ0)
π

ln
∆

µ0
+ . . . (33)

The corresponding relation for ∆pole follows from the fact
that ∆pole = mpole

b − 2E0. In order to introduce the pa-
rameters defined in the shape-function scheme, we perform
these replacements in the expression for I(E0) in (26) and
expand the result consistently to order αs. (In the next-to-
leading order terms we can simply replace the parameters
of the pole scheme by the corresponding parameters of the
shape-function scheme.)

While the above choice appears most natural to us, it
is by no means unique. For instance, we may avoid us-
ing the running quantities mb(µf , µ) and µ2

π(µf , µ) with
“off-diagonal” scale choices µf �= µ by using instead the
parameters mb(µ, µ) and µ2

π(µ, µ), which are related to the
parameters in the pole scheme by the simpler relations

mpole
b = mb(µ, µ) + µ

CFαs(µ)
π

+ . . . ,

−λ1 = µ2
π(µ, µ)

[
1 − CFαs(µ)

2π

]
+ . . . (34)

The parameter ∆ is now determined by the equation ∆ =
mb(µ, µ) − 2E0. The scale µ could naturally be taken to
be µ0. Alternatively, we may use the parameters of the
shape-function scheme defined at a fixed reference scale
µ∗ = 1.5 GeV, at which their values have been determined
to be mb(µ∗, µ∗) = (4.65 ± 0.07) GeV and µ2

π(µ∗, µ∗) =
(0.27±0.07) GeV2 [14]. These determinations are based on
various sources of phenomenological information, including
Υ spectroscopy and moments of inclusive B-meson decay
spectra. In our numerical analysis in Sect. 8 we will present
results for different variants of the shape-function scheme.

6 Kinematic power corrections

The results of the previous section provide a complete de-
scription of theB → Xsγ decay rate at leading order in the
1/mb expansion, where the two-step matching procedure
QCD → SCET → HQET is well understood. The match-
ing coefficients and anomalous dimensions are known to
the required order, so that the scale separation and RG re-
summation can be carried out with next-to-next-to-leading
logarithmic accuracy. For practical applications, however,
it is necessary to also include corrections arising at higher
orders in the heavy-quark expansion. The leading non-
perturbative corrections proportional to the HQET param-
eter λ1 (or µ2

π) have already been included above. More
important, however, are “kinematic” power corrections of
order (∆/mb)n, which are not associated with new hadronic
parameters. Unlike the non-perturbative corrections, these
effects arise already at first order in∆/mb, and they are nu-
merically dominant in the region where ∆  ΛQCD. Tech-
nically, the kinematic power corrections arise in the match-
ing of QCD correlators onto higher-dimensional SCET and
HQET operators.

The corresponding terms are known in fixed-order per-
turbation theory, without scale separation and RG resum-
mation [26,46] (see also [17]). To perform a complete RG
analysis of even the first-order terms in ∆/mb is beyond
the scope of the present work. Since for typical values of
E0 the power corrections only account for about 15% of
the B → Xsγ decay rate, an approximate treatment will
suffice. To motivate it, we note the following two facts:
First, while the anomalous dimensions of the relevant sub-
leading SCET and HQET operators are only known for
a few cases [47], the leading Sudakov double logarithms
are determined by the cusp anomalous dimension and thus
are the same as for the terms of leading power. The rea-
son is that the cusp anomalous dimension has a geometric
origin. In the present case, it results from a product of
time-like and light-like Wilson lines describing heavy and
hard-collinear quark fields, respectively [48]. The leading
Sudakov double logarithms are therefore the same as those
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resummed into the exponents S(µh, µi) and S(µ0, µi) con-
tained in the evolution functionsU1 andU2 in (11) and (19).
Secondly, all power-suppressed terms of order (∆/mb)n are
associated with gluon emission into the hadronic final state
Xs. Because of the kinematic restriction to low-mass final
states, i.e. M2

X ≤ MB∆E , the emitted gluon can only be
hard-collinear or soft, but not hard. One should therefore
associate a coupling αs(µi) or αs(µ0) with these terms. The
leading power corrections are then of order αs(µ) δ ln δ with
δ = ∆/mb and µ ∼ µi or µ0. After RG resummation, they
can give rise to effects of order η δ, which are formally of
zeroth order in the coupling constant. Not resolving the
scale ambiguity for such terms introduces an uncertainty
that is at most of order α2

s ln2 δ.
In order to at least partially account for resummation

effects, we proceed as follows: We include the known power
corrections from real gluon emission and associate the cou-
pling αs(µi) with them. The Wilson coefficientsCi are eval-
uated at the hard scale µh. We then multiply the answer
with the evolution function U1. This accounts correctly for
the leading Sudakov logarithms in the evolution from the
hard scale µh to the intermediate scale µi. While the con-
ventional parton-model calculation of the B → Xsγ decay
rate is performed with on-shell b quarks, we add a resid-
ual momentum such that pb = mbv + k. In the light-cone
component n · pb = mb + n · k we keep the n · k piece,
because it is of the same order as the corresponding com-
ponent n · phc of a hard-collinear momentum. In all other
components we neglect k. This accounts for some, but not
all shape-function effects. The net result is that we must
replace mb → MB − ω̂ (and hence ∆E → ∆E − ω̂) in the
parton-model calculation, and then convolute the result
with the leading-order shape function. In the approxima-
tion where the small parameter εCKM in (5) is set to zero
(which is an excellent approximation given that we are
dealing with power-suppressed effects), this yields

Γ power
B̄→Xsγ

(E0)

=
G2

Fα

32π4 |VtbV
∗
ts|2m2

b(µh)U1(µh, µi)

×
∫ ∆E

0
dω̂ Ŝ(ω̂, µi) (MB − ω̂)3

×


CFαs(µi)

4π

∑
i,j=1,7,8

i≤ j

Re
(
C∗

i (µh)Cj(µh)
)

×f̂ij

(
∆E − ω̂

MB − ω̂

)

−Re
(
C∗

1 (µh)Ceff
7γ (µh)

) λ2

9m2
c


 . (35)

The functions f̂ij(δ) vanish linearly with δ and so are of
order ∆/mb. They coincide with 3fij(δ) in [17] except for
the case of f̂77(δ), which requires an additional subtraction

due to the fact that the function p3(η, δ) in (26) already
contains somepower corrections resulting fromthepresence
of the factor (MB − P+)3 in (1). We find

f̂77(δ) = 3f77(δ) − δ (12 ln δ + 9) + δ2
(

6 ln δ +
15
2

)

−δ3
(

4
3

ln δ +
17
9

)
. (36)

The relevant expressions are

f̂77(δ) = δ +
17δ2

2
− 23δ3

9
− δ

(
16 − 7δ +

4δ2

3

)
ln δ ,

f̂88(δ) =
4
9

{
L2(1 − δ) − π2

6
+ 2 ln(1 − δ)

− δ

4
(2 + δ) ln δ +

7δ
4

+
3δ2

4
− δ3

6

−
[
δ +

δ2

2
+ 2 ln(1 − δ)

]
ln
mb

ms

}
,

f̂78(δ) =
8
3

[
L2(1 − δ) − π2

6
− δ ln δ +

9δ
4

− δ2

4
+
δ3

12

]
,

f̂11(δ) =
16
9

∫ 1

0
dx (1 − x)(1 − xδ)

∣∣∣∣ zx G
(x
z

)
+

1
2

∣∣∣∣
2

,

f̂17(δ) = −3f̂18(δ)

= − 8
3

∫ 1

0
dxx(1 − xδ) Re

[
z

x
G
(x
z

)
+

1
2

]
, (37)

where xδ = max(x, 1 − δ), as previously z = (mc/mb)2,
and

G(t) =




−2 arctan2
√
t/(4 − t) ; t < 4 ,

2
(

ln
[
(
√
t+

√
t− 4)/2

]
− iπ

2

)2

; t ≥ 4 .
(38)

The next step is to account for the evolution between µi
and µ0, and to evaluate the shape-function integrals for
∆  ΛQCD using the techniques described in Sect. 4. From
(18) and (25), we find

Ŝparton(ω̂, µi) = U2(µi, µ0)
e−γEη

Γ (η)
θ(ω̂ − Λ̄)

µη
0(ω̂ − Λ̄)1−η

+ . . . ,

(39)
where Λ̄ is defined in the shape-function scheme (see
Sect. 5), and the dots represent terms of order αs(µ0) and
higher-order non-perturbative corrections, which we con-
sistently neglect. Inserting this result into (35) yields

Γ power
B̄→Xsγ

(E0) =
G2

Fα

32π4 |VtbV
∗
ts|2m2

b(µh)

×U1(µh, µi)U2(µi, µ0)
e−γEη

Γ (1 + η)
m3

b

(
∆

µ0

)η

p3

(
η,

∆

mb

)

×


CFαs(µi)

4π

∑
i,j=1,7,8

i≤j

Re
(
C∗

i (µh)Cj(µh)
)
Fij
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×
(
η,

∆

mb

)

− Re
(
C∗

1 (µh)Ceff
7γ (µh)

) λ2

9m2
c


 , (40)

where

Fij(η, δ) (41)

=
1

p3(η, δ)

∫ 1

0
dy η yη−1(1 − yδ)3 f̂ij

(
(1 − y)δ
1 − yδ

)
.

The definition of the “smeared” functions Fij(η, δ) is such
that Fij(0, δ) = f̂ij(δ), Fij(η, 0) = f̂ij(0) = 0,
and Fij(η, 1) = f̂ij(1).

The result (40) has the desired features that the lead-
ing Sudakov double logarithms are correctly resummed in
the product U1 U2, and that the gluon-emission terms are
associated with a low-scale coupling constant that is larger
than αs(µh). However, we stress that while the result is
correct when expanded in fixed-order perturbation theory
to first order in αs, the resummation of single logarithmic
terms is only approximate. After a complete RG resumma-
tion, terms of the form αs ln(∆/mb), which arise from the
ln δ terms in the expressions for the functions f̂ij , would
be resummed into functions of η, e.g.

CFαs(µi)
π

ln
mb

∆
(42)

→ η +
CFαs(µi)

π
ln
mb∆

µ2
i

− 2CFαs(µ0)
π

ln
∆

µ0
+ . . .

The correct answer will contain more complicated func-
tions of η as well as non-logarithmic next-to-leading-order
corrections at the scales µi and µ0.

While we expect that (40) gives a good approximation
for the power-suppressed contributions to the B → Xsγ
decay rate, it would be important and conceptually inter-
esting to explore the structure of power corrections further,
using the effective field-theory technology developed here
and in [14]. It should be possible (with a significant amount
of work) to resolve the scale ambiguity for the first-order
power corrections in ∆/mb. Also, an effective field-theory
analysis would allow a more rigorous description of cer-
tain non-perturbative effects, such as the λ2/m

2
c term in

(35), which models a long-distance contribution related to
charm-penguin diagrams [49,50], or the logarithmic mass
singularity regularized by ms in the expression for f̂88 in
(37), which is related to fragmentation effects [51]. More
generally, such an analysis would provide a transparent
power counting for any long-distance contributions involv-
ing soft partons (not only heavy quarks) in the MSOPE.

7 Ratios of decay rates

The contributions from the three different short-distance
scales entering our central result (20) and the associated

theoretical uncertainties can be disentangled by taking ra-
tios of decay rates. Some ratios probe truly short-distance
physics (i.e., physics above the scale µh ∼ mb) and so re-
main unaffected by the new theoretical results obtained
in this paper. For some other ratios, the short-distance
physics associated with the hard scale cancels to a large
extent, so that one probes physics at the intermediate and
low scales, irrespective of the short-distance structure of
the theory. These ratios are important, because they are
insensitive to new physics and just probe the interplay of
hard-collinear and low scales in the process. Below, we
investigate examples of both classes of ratios.

7.1 Ratios insensitive to low-scale physics

Most importantly, physics beyond the standard model may
affect the theoretical results for the B → Xsγ branching
ratio and CP asymmetry only via the Wilson coefficients
of the various operators in the effective weak Hamiltonian.
(An exception are unconventional new physics scenarios
with new light particles, such as a supersymmetric model
with light gluinos and b̃ squarks considered in [52].) As
a result, the ratio of the B → Xsγ decay rate in a new
physics model relative to that in the standard model re-
mains largely unaffectedby the resummation effects studied
in the present work. From (20), we obtain

ΓB̄→Xsγ |NP

ΓB̄→Xsγ |SM
=

|Hγ(µh)|2NP

|Hγ(µh)|2SM
+ power corrections. (43)

The power corrections would introduce some mild depen-
dence on the intermediate and low scales µi and µ0, as well
as on the cutoff E0.

Another important example is the direct CP asymme-
try in B → Xsγ decays, for which we obtain

ACP =
ΓB̄→Xsγ − ΓB→Xs̄γ

ΓB̄→Xsγ + ΓB→Xs̄γ
(44)

=
|Hγ(µh)|2 − |Hγ(µh)|2
|Hγ(µh)|2 + |Hγ(µh)|2 + power corrections,

where Hγ(µh) is obtained by CP conjugation, which in
the standard model amounts to replacing εCKM → ε∗

CKM
in (4). It follows that the predictions for theCP asymmetry
in the standard model and various new physics scenarios
presented in [29] remain largely unaffected by our consid-
erations.

7.2 Ratios sensitive to low-scale physics

The multi-scale effects studied in this work result from the
fact that in practice the B → Xsγ decay rate is measured
with a restrictive cut on the photon energy. As we have
pointed out, this introduces sensitivity to the scales µi ∼√
mb∆ and µ0 ∼ ∆ = mb − 2E0 in addition to the hard

scale µh ∼ mb. These complications would be absent if
it were possible to measure the fully inclusive rate. It is
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convenient to define a function F (E0) as the ratio of the
B → Xsγ decay rate with a cutE0 divided by the total rate,

F (E0) =
ΓB̄→Xsγ(E0)
ΓB̄→Xsγ(E∗)

. (45)

Because of a logarithmic soft-photon divergence for very
low energy, it is conventional to define the “total” inclusive
rate as the rate with a very low cutoffE∗ = mb/20 [17]. The
denominator in the expression for F (E0) can be evaluated
using a conventional OPE, which corresponds to setting
all three matching scales equal to µh. The numerator is
given by our expression in (20), supplemented by the power
corrections in (40). We obtain

F (E0) = U1(µh, µi)U2(µi, µ0)
e−γEη

Γ (1 + η)

(
∆

µ0

)η

(46)

×

D(∆)

[
p3(η, δ) +

η(η − 1)
2

(−λ1)
3∆2

]

+p3(η, δ)
CFαs(µi)

4π

×
∑
i≤j

Re
C∗

i (µh)Cj(µh)
|Ceff

7γ (µh)|2 Fij(η, δ)




/ 
1 +

CFαs(µh)
4π

×

H(δ∗) +

∑
i≤j

Re
C∗

i (µh)Cj(µh)
|Ceff

7γ (µh)|2 f̂ij(δ∗)




 ,

where δ = ∆/mb, δ∗ = 1 − 2E∗/mb = 0.9, and

D(∆) = 1 +
CFαs(µi)

4π
J (∆) +

CFαs(µ0)
4π

S(∆) , (47)

H(δ∗) = 4 ln2 mb

µh
− 10 ln

mb

µh
− 2 ln2 δ∗ − 7 ln δ∗ + 7

− 7π2

6
+ δ∗ (12 ln δ∗ + 9) − δ2∗

(
6 ln δ∗ +

15
2

)

+δ3∗

(
4
3

ln δ∗ +
17
9

)
+
(

2 ln δ∗ +
3
2

)
(−λ1)
3δ2∗m2

b

.

The result (46) is RG invariant and so (formally) indepen-
dent of the three matching scales µh, µi, and µ0, and at
leading power it is insensitive to the hard matching correc-
tions contained in Hγ(µh). To an excellent approximation,
the fraction function F (E0) therefore applies to the stan-
dard model as well as to any new physics scenario. Note
also that the b-quark mass enters the expression for the
fraction function only at the level of power corrections.
The prefactorm3

b m
2
b(µh), which multiplies the total decay

rate, cancels out in the ratio (45). Finally, we stress that
the expression for F (E0) given above still refers to the pole

scheme. It is necessary to eliminate the pole-scheme pa-
rameters mb and λ1 in favor of physical parameters before
using this result.

Another important example of a ratio that is largely in-
sensitive to the hard matching contributions is the average
photon energy defined as

〈Eγ〉 =

∫ MB/2

E0

dEγ Eγ
dΓ
dEγ∫ MB/2

E0

dEγ
dΓ
dEγ

, (48)

which has been proposed as a good way to measure the b-
quarkmass or, equivalently, theHQETparameter Λ̄ [53,54].
The impact of shape-function effects on the theoretical pre-
diction for this ratio has been studied in [17, 55] and was
found to be significant. Here we study the average photon
energy in the MSOPE region, where a model-independent
prediction can be obtained. It is structurally different from
the one obtained using the conventional OPE in the sense
that contributions associated with different scales are dis-
entangled from each other. We find (with δ = ∆/mb)

〈Eγ〉 =
mb

2

(
1 − λ1 + 3λ2

2m2
b

)
(49)

×




D(∆) p4(η, δ)
D(∆) p3(η, δ)

+
CFαs(µi)

4π

∑
i,j=1,7,8

i≤ j

Re
C∗

i (µh)Cj(µh)
|Ceff

7γ (µh)|2 dij(δ)


 ,

where p4(η, δ) is defined in (22), and

dij(δ) =
∫ δ

0
dx f̂ij(x) − δ f̂ij(δ) . (50)

Analytical expressions for the functions dij(δ) are given in
Appendix C. They vanish quadratically for δ → 0 and so
give very small contributions for realistic values of the cut-
off. We therefore do not include RG resummation effects
for these terms. The non-perturbative corrections involving
the parameters λ1 and λ2 are taken from [4]. Note that the
expression in brackets is a purely perturbative result free of
hadronic parameters. When expanded in fixed-order per-
turbation theory, our result (49) reduces to an expression
first obtained in [17].

We stress that the hard scale µh ∼ mb affects the av-
erage photon energy only via second-order power correc-
tions. This shows that it is not appropriate to compute
the quantity 〈Eγ〉 using a simple heavy-quark expansion
at the scale mb, which is however done in the conventional
OPE approach [53,54]. This observation is important, be-
cause information about moments of the B → Xsγ photon
spectrum is sometimes used in global fits to determine the
CKM matrix element |Vcb| along with HQET parameters.
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Keeping only the leading power corrections, which is a very
good approximation, the above expression simplifies to

〈Eγ〉 =
mb

2

− ∆

2(1 + η)2

[
η(1 + η)

+
CFαs(µi)

π

(
ln
mb∆

µ2
i

− h(η) − 3
4

− 1
1 + η

)

− 2CFαs(µ0)
π

(
ln
∆

µ0
− h(η) +

1
2

− 1
1 + η

)]
+ . . . (51)

In this approximation, 〈Eγ〉 only depends on physics at the
intermediate and low scales µi and µ0. The next-to-leading
order perturbative corrections in this formula are numer-
ically quite significant. For E0 = 1.8 GeV, and taking the
default scale choicesµi =

√
mb∆ andµ0 = ∆, we find in the

pole scheme (usingmpole
b = 4.8 GeV for the purpose of illus-

tration) 〈Eγ〉 ≈ [2.27 + 0.29αs(
√
mb∆) − 0.19αs(∆)] GeV.

Eliminating the pole mass mb in favor of the b-quark mass
mb(∆,∆) defined in the shape-function scheme, we ob-
tain 〈Eγ〉 ≈ [2.222+0.254αs(

√
mb∆)+0.009αs(∆)] GeV ≈

2.30 GeV. When the b-quark mass is defined in the shape-
function scheme, the average photon energy is numerically
very close to 1

2mb(∆,∆) ≈ 2.33 GeV,meaning that the first
term in (51) dominates. Note also that the correction pro-
portional to the low-scale coupling αs(∆) is largely reduced
in this scheme, ensuring an improved perturbative behav-
ior.

8 Numerical results

We are now ready to present the phenomenological impli-
cations of our findings. Table 1 contains a list of the input

Table 1. Compilation of input parameters entering the numer-
ical analysis. The top-quark mass enters the expressions for the
Wilson coefficients Ci. The strange-quark mass is required as
an infra-red regulator in (37). Only the real part of εCKM is
needed for the calculations in this work

Parameter Value Source

mb(µ∗, µ∗) [GeV] 4.65 ± 0.07 [14]

µ2
π(µ∗, µ∗) [GeV2] 0.27 ± 0.07 [14]

mb(mb) [GeV] 4.25 ± 0.08 [56]

mc(mc) [GeV] 1.25 ± 0.15 [57]

mpole
t [GeV] 178.0 ± 4.3 [58]

ms/mb 0.02 [17]

τB [ps] 1.604 ± 0.016 [57]

αs(MZ) 0.1187 ± 0.0020 [57]

|V ∗
tsVtb| [10−3] 40.4+1.4

−0.6 [59]

Re(εCKM) [10−3] 9.8+5.1
−4.2 [59]

λ1 [GeV2] −0.25 ± 0.20 [60,61]

λ2 [GeV2] 0.12 1
4 (M2

B∗ − M2
B)

parameters entering the analysis togetherwith their present
uncertainties. We have inflated the error on λ1 obtained
by averaging the values quoted in [60,61] from 0.06 GeV2

to 0.20 GeV2, taking into account that this parameter is
affected by infra-red renormalon ambiguities [44, 45]. We
vary the quark masses mc and mb independently, in which
case

√
z = mc(µh)/mb(µh) = 0.221 ± 0.027. Additional

uncertainties related to the possibility that the proper nor-
malization point for the charm-quark mass in penguin loop
graphs may be significantly lower than the hard scale µh

are considered part of the perturbative error.
The most important correlations between input pa-

rameters are implemented as follows. We consider the two
b-quark masses mb(µ∗, µ∗) and mb(mb) as being fully cor-
related and vary their values simultaneously. The same
applies to the values of the parameters µ2

π(µ∗, µ∗) and λ1.
Next, we use that the value ofmb is strongly anti-correlated
with that of |Vcb|, because the most precise determination
of mb is obtained from the analysis of B → Xc l ν decay
distributions. A recent study in [62] quotes a correlation
coefficient c = −0.49 betweenmb and |Vcb|. CKM unitarity
ensures that |Vcb| is to a very good approximation equal
to the product |V ∗

tsVtb|, so that the same anti-correlation
can be assumed between mb and |V ∗

tsVtb|.
Before presenting our results, we reiterate that to apply

the formulae derived in this work we must first eliminate
the parameters mb and λ1 defined in the pole scheme in
terms of physical parameters defined in the shape-function
scheme (we do not eliminate λ1 in the second-order power
corrections in (2) and (49)), and then expand the answer
consistently to O(αs), treating ratios such asαs(µi)/αs(µh)
and αs(µ0)/αs(µi) as O(1) parameters. This expansion is
readily automatized. Throughout, we use the three-loop
expression for the running coupling αs(µ) defined in the
MS scheme [57].

8.1 Partial B → Xsγ branching ratio

We begin by presenting predictions for the CP -averaged
B → Xsγ branching fraction with a cutoffEγ ≥ E0 applied
on the photon energy measured in the B-meson rest frame.
Lowering E0 below 2 GeV is challenging experimentally.
The first measurement with E0 = 1.8 GeV has recently
been reported by the Belle Collaboration [6]. It yields1

Br(B → Xsγ)
∣∣
E0=1.8 GeV = (3.38 ± 0.30 ± 0.29) · 10−4 ,

〈Eγ〉∣∣
E0=1.8 GeV = (2.292 ± 0.026 ± 0.034) GeV .

(52)

For E0 = 1.8 GeV we have ∆ ≈ 1.1 GeV, which is suf-
ficiently large to apply the formalism developed in the
present work. We will also present results forE0 = 1.6 GeV
because this value has been used in some theoretical stud-
ies, although it has not yet been achieved in an experiment.

1 To obtain the first result we had to undo a theoretical
correction accounting for the effects of the cut Eγ > 1.8 GeV,
which had been applied to the experimental data.
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Table 2. B → Xsγ branching ratio with estimates of perturbative uncertainties obtained
by variation of the matching scales, for three variants of the shape-function scheme. See text
for explanation

E0 Scheme Br [10−4] µh µi µ0 Sum Power Cors. Combined

1.8 GeV RS 1 3.37 +0.02
−0.00

+0.25
−0.37

+0.41
−0.03

+0.48
−0.37

+0.12
−0.07

+0.49
−0.38

RS 2 3.38 +0.02
−0.00

+0.25
−0.37

+0.15
−0.18

+0.29
−0.41

+0.12
−0.07

+0.31
−0.42

RS 3 3.36 +0.02
−0.00

+0.25
−0.37

+0.18
−0.18

+0.30
−0.41

+0.12
−0.07

+0.32
−0.42

1.6 GeV RS 1 3.47 +0.02
−0.00

+0.28
−0.39

+0.14
−0.01

+0.31
−0.39

+0.10
−0.05

+0.33
−0.39

RS 2 3.47 +0.02
−0.00

+0.28
−0.39

+0.13
−0.14

+0.31
−0.41

+0.10
−0.05

+0.33
−0.41

RS 3 3.48 +0.02
−0.00

+0.28
−0.39

+0.18
−0.13

+0.33
−0.41

+0.10
−0.05

+0.34
−0.41

(For comparison, the value E0 = 2.0 GeV adopted in the
CLEO analysis [5] implies ∆ ≈ 0.7 GeV, which we believe
may be too low for a short-distance treatment.)

We first set all input parameters to their default values
and study the dependence of the branching ratio on the
three matching scales µh, µi, and µ0. The sensitivity of our
predictions to variations of the matching scales provides
an estimate of unknown higher-order perturbative correc-
tions. We shall study three different version of the shape-
function scheme for the definition of the b-quark mass and
the kinetic-energy parameter µ2

π, as discussed in Sect. 5.
In the first scheme (called “RS 1”) we use the parameters
mb(∆,µ0) and µ2

π(∆,µ0) defined in (33). In the second
scheme (“RS 2”) we instead use mb(µ0, µ0) and µ2

π(µ0, µ0)
from (34). Finally, in the third scheme (“RS 3”) we employ
the parameters mb(µ∗, µ∗) and µ2

π(µ∗, µ∗) renormalized at
a fixed scale µ∗ = 1.5 GeV, at which their values have been
determined in [14]. In the schemes RS 1 and RS 2, these
reference values are evolved to other scales using equations
derived in [14].

The matching scales are independently varied about
their default values µh = mb, µi =

√
mb∆, and µ0 = ∆

by multiplying them with factors between 2/3 and 3/2.
Thus, for mb = 4.7 GeV and E0 = 1.8 GeV, we vary
µh ∈ [3.13, 7.05] GeV, µi ∈ [1.52, 3.41] GeV, and µ0 ∈
[0.73, 1.65] GeV, while for E0 = 1.6 GeV the latter two
ranges are replaced by µi ∈ [1.77, 3.98] GeV, and µ0 ∈
[1.0, 2.25] GeV. Together, this covers a conservative range
of scales. The resulting variations of the branching ratio
are shown in Table 2.

We observe an excellent stability of our predictions with
respect to variations of the hard matching scale µh. In fact,
the sensitivity is so small that it cannot reasonably be taken
as an indication of the size of higher-order terms in the ex-
pansion in powers of αs(µh). The sensitivity to variations
of the intermediate matching scale µi is more pronounced.
The numbers suggest that terms of order α2

s (µi) could im-

pact the branching ratio at the 10% level, which appears
entirely reasonable given that αs(µi) ≈ 0.3. The sensitiv-
ity to the low matching scale µ0 turns out to be rather
small. The coefficient of the αs(µ0) term depends on the
scheme adopted for the definition of the parametersmb and
µ2

π, and it appears that in the three schemes considered
here this coefficient is numerically small. While it is not
guaranteed that this feature will persist in higher orders,
the observation of good stability at the scale µ0 suggests
that the shape-function scheme captures the most impor-
tant low-scale effects and absorbs them into the running
b-quark mass and the parameter µ2

π. The column labeled
“Sum” shows the combined uncertainty obtained by adding
the three scale variations in quadrature. The next column,
labeled “Power Cors.”, gives an estimate of the pertur-
bative uncertainty in our treatment of kinematic power
corrections, as discussed in Sect. 6. It is obtained by study-
ing two variants of the expression (40), one where we set
p3 → 1 andFij → f̂ij , and one where in addition we neglect
all anomalous-dimension functions except those governed
by Γcusp. In both cases, we obtain expressions that differ
from (40) by terms that are beyond the accuracy of our
calculation. The resulting changes in the branching ratio
are the same in all schemes and range between 1.5 and
3.5%, corresponding to a 10–25% uncertainty in the size
of the power-suppressed contributions themselves. Finally,
the last column in the table shows our estimates for the total
perturbative uncertainty in the prediction of the branch-
ing ratio, which we find to be of order 10%, significantly
larger than previous estimates. For example, the authors
of [7,27] argued in favor of a perturbative error of only 4%
from scale variation (when mc/mb is kept fixed).

The remaining uncertainties in our predictions are due
to input parameter variations. They are essentially the
same in the three renormalization schemes and are sum-
marized in Table 3 for the case of RS 2. The last column
shows the combined errors, added in quadrature. They are

Table 3. B → Xsγ branching ratio with estimates of theoretical uncertainties due to
input parameter variations as listed in Table 1. The upper (lower) sign refers to increasing
(decreasing) a given input parameter

E0 Br [10−4] mb mc mt |V ∗
tsVtb| τB αs(MZ) Combined

1.8 GeV 3.38 +0.31
−0.30 ∓0.10 ±0.04 +0.24

−0.10 ±0.03 +0.07
−0.08

+0.32
−0.30

1.6 GeV 3.48 +0.30
−0.28

−0.11
+0.10 ±0.04 +0.24

−0.10 ±0.03 ±0.10 +0.32
−0.29
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Table 4. B → Xsγ event fraction F (E0) with estimates of perturbative uncertainties
obtained by variation of the matching scales, for three variants of the shape-function
scheme. See text for explanation

E0 Scheme F (E0) [%] µh µi µ0 Sum Power Cors. Combined

1.8 GeV RS 1 89.1 +2.4
−2.2

+1.4
−5.0

+2.4
−5.4

+3.6
−7.7

+4.7
−2.4

+5.9
−8.1

RS 2 89.1 +2.4
−2.3

+1.5
−5.0

+2.6
−4.0

+3.8
−6.8

+4.7
−2.4

+6.0
−7.2

RS 3 89.2 +2.5
−2.3

+1.3
−5.0

+2.5
−3.7

+3.8
−6.6

+4.6
−2.4

+6.0
−7.0

1.6 GeV RS 1 93.1 +2.8
−2.6

+2.7
−5.7

+2.6
−2.3

+4.7
−6.7

+3.9
−1.9

+6.1
−7.0

RS 2 93.1 +2.8
−2.6

+2.7
−5.7

+2.4
−2.5

+4.6
−6.8

+3.9
−1.9

+6.0
−7.1

RS 3 93.1 +2.8
−2.6

+2.7
−5.7

+2.6
−2.3

+4.7
−6.7

+3.9
−1.9

+6.1
−7.0

dominated by the uncertainties in the b-quark mass and
in |Vts|, whose significant anti-correlation (c = −0.49) is
taken into account in computing the total error. Parame-
ter dependences not shown in the table have a negligible
effect (< 1%) on the branching ratio. Note that in con-
trast to previous authors we do not divide the theoretical
expression for the B → Xsγ decay rate by a semileptonic
rate, but present an absolute prediction for the branch-
ing ratio itself. Once the correlation between parameters
is properly taken into account, normalizing Γ (B → Xsγ)
to the semileptonic rate Γ (B → X l ν) does not lead to a
significant reduction of the theoretical uncertainties.

The above results can be combined into the new stan-
dard model predictions

Br(B → Xsγ)
∣∣∣
E0=1.8 GeV

= (3.38+0.31
−0.42 [pert.] +0.32

−0.30 [pars.]) × 10−4 ,

Br(B → Xsγ)
∣∣∣
E0=1.6 GeV

= (3.47+0.33
−0.41 [pert.] +0.32

−0.29 [pars.]) × 10−4 , (53)

where we use the mass renormalization scheme RS 2 as
our default. The first error refers to the perturbative un-
certainty and the second one to parameter variations. The
first value is in excellent agreement with the experimen-
tal result (52). Comparing the two results, and naively
assuming Gaussian errors, we find that2

Br(B→Xsγ)exp −Br(B→Xsγ)SM < 1.3 ·10−4 (95% CL) .
(54)

We stress that, mainly as a result of the enlarged theoretical
uncertainty but also due to the use of more recent data,
this bound is much weaker than the one derived in [7],
where this difference was found to be less than 0.5 · 10−4.
Consequently, we obtain weaker constraints on new physics
parameters. For instance, for the case of the type-II two-
Higgs-doublet model, we may use the analysis of [63] to
obtain the bound

mH+ > approx. 200 GeV (95% CL) , (55)

which is significantly weaker than the constraints mH+ >
500 GeV (at 95% CL) and mH+ > 350 GeV (at 99% CL)

2 We do not use the CLEO data [5] in deriving this bound,
because the choice E0 = 2 GeV does not allow for a model-
independent treatment of the effects of the cut.

found in [7]. To find the precise numerical value for the
bound would require a dedicated analysis, which is beyond
the scope of this paper.

8.2 Event fraction F (E0)

As an alternative way to discuss the effects of imposing
the cut on the photon energy, we study the fraction func-
tion F (E0) defined in (45), which up to power corrections
is insensitive to the short-distance physics encoded in the
Wilson coefficients Ci. The sensitivity of F (E0) to scale
variations is studied in Table 4, which is analogous to Ta-
ble 2 for the branching ratio. We find that the fraction
function exhibits a stronger sensitivity to the hard scale
µh than the branching ratio, changing by about 3% as µh is
varied between 2mb/3 and 3mb/2. The sensitivity to vari-
ations of the matching scales µi and µ0 follows the same
pattern as in the case of the branching ratio, but the varia-
tions are somewhat smaller in magnitude. Note that there is
a difference between the function F (E0) and the branching
ratio as far as the dependence on µ0 is concerned, because
the factor m3

b present in (26) and (40) cancels in the ra-
tio (46). Since in the shape-function scheme the pole mass
mb is expanded in a series in αs(µ0), this has an effect
on the perturbative expansion. Finally, the perturbative
uncertainties in the calculation of the power-suppressed
terms are again at the level of a few percent. Our estimate
for the combined perturbative error is presented in the
last column.

In contrast to theB → Xsγ branching ratio, the fraction
function F (E0) is independent of several input parameters
(i.e., mb(mb), |V ∗

tsVtb|, τB , λ1,2, and εCKM), and it shows a
very weak sensitivity to variations of the remaining param-
eters. This is illustrated in Table 5, which summarizes the
resulting theoretical uncertainties for the case of RS 2. The

Table 5. B → Xsγ event fraction F (E0) with estimates of
theoretical uncertainties due to input parameter variations as
listed in Table 1. The upper (lower) sign refers to increasing
(decreasing) a given input parameter

E0 F (E0) [%] mb mc αs(MZ) µ2
π Combined

1.8 GeV 89.1 +0.8
−1.0 ±0.5 −1.1

+0.9 ∓0.3 +1.3
−1.6

1.6 GeV 93.1 ±0.3 ±0.4 ∓0.5 ∓0.1 +0.7
−0.8
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Table 6. Scale dependence and parameter variations for the average photon energy
in B → Xsγ decays. See text for explanation

〈Eγ〉 [MeV] µh µi µ0 Comb. mb(µ∗, µ∗) −λ1 αs(MZ) Comb.

2272 ±1 +19
−17

+48
−70

+51
−72 ±37 ±10 −7

+6 ±39

combined errors are of order 1% and thus almost negligible
compared with the perturbative uncertainties.

In summary, we obtain

F (1.8 GeV) = (89+6
−7 [pert.] ± 1 [pars.])% ,

F (1.6 GeV) = (93+6
−7 [pert.] ± 1 [pars.])% . (56)

This is the first time that these fractions have been com-
puted in a model-independent way. The result correspond-
ing to E0 = 1.8 GeV may be compared with the values
(95.8+1.3

−2.9)% and (95 ± 1)% obtained from the study of
shape-functionmodels in [17] and [55], respectively. In these
studies, perturbative uncertainties have been ignored. A
calculation in the conventional OPE approach gives a sim-
ilar result, (95.2+1.3

−2.9)% [7], where the authors took the
error estimate from [17]. In the present work, we obtain a
smaller central value with a larger uncertainty.

As mentioned in the Introduction, the fraction function
F (E0) can be used to combine our study of multi-scale
effects with other, independent calculations of the total
B → Xsγ branching ratio, both in the standard model
and in extensions of it. For instance, we may use the re-
sult (3.70 ± 0.31) × 10−4 for the total branching ratio in
the standard model obtained from [7,27] (where the error
contains a 6.7% perturbative uncertainty) and combine it
with (56) to find

Br(B → Xsγ)
∣∣∣
E0=1.8 GeV

= (3.30+0.31
−0.35 [pert.] ± 0.17 [pars.]) × 10−4 ,

Br(B → Xsγ)
∣∣∣
E0=1.6 GeV

= (3.44+0.32
−0.35 [pert.] ± 0.17 [pars.]) × 10−4 . (57)

Compared with (53), the perturbative uncertainty is re-
duced slightly. However, only the reduction in the µ0 de-
pendence can be taken seriously, as the µi dependence is
formally the same in (53) and (57). The significant re-
duction of the parameter uncertainties is partly due to
the fact that the authors of [7, 27] take smaller parame-
ter variations than those in Table 1. When (57) is used
instead of (53) in deriving the upper bound for the dif-
ference Br(B → Xsγ)exp − Br(B → Xsγ)SM in (54), then
this bound is reduced slightly, to 1.2 · 10−4.

As a final remark,we compare our results for the branch-
ing ratio with a cut at E0 = 1.6 GeV in (53) and (57) with
the benchmark value (3.57 ± 0.30) × 10−4 corresponding
to the most recent calculation [27] published prior to the
present work. Our central values are about 3% lower and,
more importantly, the total theoretical uncertainties we
find are about 50% larger.

8.3 Average photon energy

The last quantity we wish to explore is the average photon
energy. As discussed in Sect. 7.2, this quantity is almost in-
sensitive to high-scale physics aswell as to non-perturbative
hadronic effects. However, it is very sensitive to the inter-
play of physics at the intermediate and low scales, as illus-
trated by the approximate relation (51). Our predictions
for 〈Eγ〉 and its theoretical uncertainties are summarized
in Table 6 for the case E0 = 1.8 GeV, corresponding to the
cut employed in [6]. Since in this case the differences be-
tween the three variants of the shape-function scheme are
insignificant, we only show results for RS 2. As expected,
we find essentially no dependence on the hard matching
scale, a modest dependence on the intermediate scale, and
a more pronounced sensitivity to the low scale. The com-
bined errors from scale variations are of order 50–70 MeV.
The study of uncertainties due to parameter variations ex-
hibits that the prime sensitivity is to the b-quark mass,
which is expected, since 〈Eγ〉 = mb/2 + . . . to leading or-
der. The next-important contribution to the error comes
from the HQET parameter λ1. The total error is about
40 MeV.

Combining these results, we have to a very good ap-
proximation

〈Eγ〉
∣∣∣
E0=1.8 GeV

= (2.27+0.05
−0.07) GeV +

δmb

2
− δλ1

4mb
, (58)

where the error accounts for the perturbative uncertainty.
The central values for the relevant input parameters are
mb(µ∗, µ∗) = 4.65 GeV and λ1 = −0.25 GeV2, and the
quantities δmb and δλ1 parameterize possible deviations
from these values. Our prediction is in excellent agreement
with the Belle result in (52). This finding provides sup-
port to the value of the b-quark mass in the shape-function
scheme extracted in [14]. We stress, however, that the large
perturbative uncertainties in the formula for 〈Eγ〉 impose
significant limitations on the precision with which mb can
be extracted from a measurement of the average photon
energy. Our estimate above implies a perturbative uncer-
tainty of δmb[pert.] = +140

−100 MeV in the extracted value of
mb, which could only be reduced by means of higher-order
calculations. This uncertainty is in addition to twice the
experimental error in the measurement of 〈Eγ〉, which at
present yields δmb[exp.] = 86 MeV.

9 Conclusions and outlook

In this work, we have performed the first systematic anal-
ysis of the inclusive decays B → Xsγ in the presence of a
photon-energy cut Eγ ≥ E0, where E0 is such that ∆ =
mb−2E0 can be considered large compared to ΛQCD, while
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still ∆ � mb. This is the region of interest to experiments
at theB factories. The first condition (∆  ΛQCD) ensures
that a theoretical treatment without shape functions can be
applied. However, the second condition (∆ � mb) means
that this treatment is not a conventional heavy-quark ex-
pansion in powers of αs(mb) and ΛQCD/mb. Instead, we
have shown that three distinct short-distance scales are
relevant in this region. They are the hard scale mb, the
hard-collinear scale

√
mb∆, and the low scale ∆. To sepa-

rate the contributions associated with these scales requires
a multi-scale operator product expansion (MSOPE), we
which have constructed in this work.

Our approach allows us to study analytically the tran-
sition from the shape-function region, where ∆ ∼ ΛQCD,
into the MSOPE region, where ΛQCD � ∆ � mb, into
the region ∆ = O(mb), where a conventional heavy-quark
expansion can be applied. This is a significant improve-
ment over previous work. For instance, it has sometimes
been argued that exactly where the transition to a con-
ventional heavy-quark expansion occurs is an empirical
question, which cannot be answered theoretically. Our for-
malism provides a precise, quantitative answer to this ques-
tion. In particular, for B → Xsγ with realistic cuts on
the photon energy one is not in a region where a simple
short-distance expansion at the scale mb can be justified.
The precision that can be achieved in the prediction of the
B → Xsγ branching ratio is, ultimately, determined by how
well perturbative and non-perturbative corrections can be
controlled at the lowest relevant scale ∆, which in practice
is of order 1 GeV. Consequently, we find larger theoretical
uncertainties than previous authors. These uncertainties
are dominated by yet unknown higher-order perturbative
effects. Non-perturbative, hadronic effects at the scale ∆
appear to be small and under control.

Our treatment of the B → Xsγ branching ratio in-
cludes a complete resummation of logarithms ln(∆/mb)
at next-to-next-to-leading order in renormalization-group
improved perturbation theory. This level of precision has
not been achieved before. Besides the calculations per-
formed here and in [14, 18], we have used multi-loop cal-
culations for the cusp anomalous dimension [33, 34], the
anomalous dimension of the shape function [64] (which
we have corrected; see Appendix A and also [65]), and the
anomalous dimension of the leading-order current oper-
ator in soft-collinear effective theory [37]. These ingre-
dients are needed in order to achieve a complete sepa-
ration of the perturbative corrections controlled by the
three couplings αs(mb), αs(

√
mb∆), and αs(∆), which dif-

fer in magnitude by about a factor 2. Our prediction for
the CP -averaged B → Xsγ with a cut E0 = 1.8 GeV is
Br(B → Xsγ) = (3.38+0.31

−0.42 [pert.] +0.32
−0.30 [pars.]) × 10−4.

With this cut (89+6
−7 ±1)% of all events are contained. The

theory uncertainty we estimate is significantly larger than
that found by previous authors, and this fact has important
implications for searches of new physics in radiative B de-
cays. Quite generally, the constraints on model parameter
space have to be relaxed significantly. We have illustrated
this fact with the example of the type-II two-Higgs-doublet

model, for which we find that the lower bound on the
charged-Higgs mass is reduced to approximately 200 GeV.

This is not the first time in the history of B → Xsγ cal-
culations that issues of scale setting have changed the pre-
diction and error estimate for the branching ratio. In [22],
Czarnecki and Marciano have pointed out that the elec-
tromagnetic coupling α in the expression for the decay
rate should be identified with the fine-structure constant
(normalized at q2 = 0), and not with α(mb) renormalized
at the scale of the heavy quark in the decay. This low-
ered the prediction for the branching ratio by about 5%.
More recently, Gambino and Misiak have argued that the
charm-quark mass, which enters the next-to-leading order
corrections to the B → Xsγ rate via penguin loops, should
be identified with a running mass mc(µ) with µ ∼ mb

rather than with the pole mass [7]. This observation in-
creased the prediction for the branching ratio by about
8%, and at the same time it increased the error estimate
associated with the value of the ratio mc/mb, which before
had been taken to be the (rather well known) ratio of the
two pole masses. The point we emphasize in the present
work, namely that some effects in B → Xsγ decays should
be described by the couplings αs(

√
mb∆) and αs(∆) (and

power corrections at the scale∆) rather than αs(mb), is of a
similar nature. However, in our case the change in perspec-
tive about the theory of B → Xsγ decay is more profound,
as it imposes limitations on the very validity of a short-
distance treatment. If the short-distance expansion at the
scale ∆ fails, then the rate cannot be calculated without
resource to non-perturbative shape functions, which would
introduce an irreducible amount of model dependence. In
practice, while ∆ ≈ 1.1 GeV (for E0 ≈ 1.8 GeV) is proba-
bly sufficiently large to trust a short-distance analysis, it
would be unreasonable to expect that yet unknown higher-
order effects should be less important than in the case of
other low-scale applications of QCD, such as in hadronic
τ decays.

Given the prominent role of B → Xsγ decay in search-
ing for physics beyond the standard model, it is of great
importance to have a precise prediction for its rate in the
standard model. The present work shows that the ongoing
effort to calculate the dominant parts of the next-to-next-
to-leading corrections in the conventional heavy-quark ex-
pansion is only part of what is needed to achieve this goal.
Equally important will be to compute the dominant higher-
order corrections of order α2

s (∆) and α2
s (

√
mb∆), and to

perform a renormalization-group analysis of the leading
kinematic power corrections of order∆/mb. In fact, our er-
ror analysis suggests that these effects are potentially more
important that the hard matching corrections at the scale
mb. Let us finish by mentioning two possible approaches
for addressing the issue of higher-order perturbative ef-
fects at the intermediate and low scales: First, it would
be interesting to calculate the terms of order β0α

2
s at the

scales µi ∼ √
mb∆ and µ0 ∼ ∆. While this would fall short

of a complete calculation of O(α2
s ) corrections, the “BLM

terms” associated with the β function are often numerically
dominant [66,67]. We stress that the known O(β0α

2
s ) terms

computed in the conventional heavy-quark expansion [54]
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are not sufficient for this purpose. Separate computations
of O(β0α

2
s ) terms at the scales µh ∼ mb, µi ∼ √

mb∆, and
µ0 ∼ ∆ would be required to perform a meaningful BLM
scale setting. This statement is explained in Appendix D.
Secondly, the convergence of the perturbative expansion
at the low scale µ0 ∼ ∆ may be improved by borrowing
the idea of “contour resummation” developed in [68]. Since
the shape-function integrals can be written as contour in-
tegrals in the complex plane along a circle with radius
∆, in may be more appropriate to use a contour-weighted
coupling constant rather than the naive coupling αs(∆).
Exploring the numerical impact of these two proposals is
left for future work.
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Barcelona, Spain, where part of this work was performed. It is
a pleasure to thank Björn Lange, Xavier Garcia i Tormo, and
Ignazio Scimemi for useful discussions. I am grateful to Gregory
Korchemsky for bringing the paper [38] to my attention, and
for discussions concerning the two-loop anomalous dimension
of the shape function. Finally, I am indebted to Einan Gardi
for providing the perturbative expansion of his expression for
the B → Xsγ rate obtained in [36], and for many illuminating
discussions of factorization results in deep-inelastic scattering,
which have been instrumental in finding the (hopefully correct)
expressions for the two-loop anomalous dimensions presented
in Appendix A. This research was supported by the National
Science Foundation under Grant PHY-0355005.

Appendix A:
Anomalous dimensions and RG functions

The exact solutions (14) to the RG equations in (12) can
be evaluated perturbatively by expanding the anomalous
dimensions and β function,

Γcusp(αs) = Γ0
αs

4π
+ Γ1

(αs

4π

)2
+ Γ2

(αs

4π

)3
+ . . . , (A.1)

β(αs) = −2αs

[
β0

αs

4π
+ β1

(αs

4π

)2
+ β2

(αs

4π

)3
+ . . .

]
,

and similarly for the remaining anomalous dimensions. We
work consistently at next-to-leading order in RG-improved
perturbation theory, keeping terms through order αs in
the final expressions for the Sudakov exponent S and the
functions aΓ , aγ , and aγ′ . For aΓ one obtains the stan-
dard expression

aΓ (ν, µ) (A.2)

=
Γ0

2β0

[
ln
αs(µ)
αs(ν)

+
(
Γ1

Γ0
− β1

β0

)
αs(µ) − αs(ν)

4π
+ . . .

]
.

The result for the Sudakov factor S is more complicated, as
it is necessary to include terms of next-to-next-to-leading
logarithmic order. We obtain

S(ν, µ) =
Γ0

4β2
0

{
4π

αs(ν)

(
1 − 1

r
− ln r

)

+
(
Γ1

Γ0
− β1

β0

)
(1 − r + ln r) +

β1

2β0
ln2 r

+
αs(ν)

4π

[(
β1Γ1

β0Γ0
− β2

β0

)
(1 − r + r ln r)

+
(
β2

1

β2
0

− β2

β0

)
(1 − r) ln r

−
(
β2

1

β2
0

− β2

β0
− β1Γ1

β0Γ0
+
Γ2

Γ0

)
(1 − r)2

2

]

+ . . .

}
, (A.3)

where r = αs(µ)/αs(ν). Whereas the two-loop anomalous
dimensions and β function are required in (A.2), the ex-
pression for S also involves the three-loop coefficients Γ2
and β2.

The perturbative expansion of the QCD β function to
three-loop order is [69] (all results refer to the MS renor-
malization scheme)

β0 =
11
3
CA − 2

3
nf =

25
3
,

β1 =
34
3
C2

A − 10
3
CA nf − 2CF nf =

154
3

,

β2 =
2857
54

C3
A +

(
C2

F − 205
18

CFCA − 1415
54

C2
A

)
nf

+
(

11
9
CF +

79
54

CA

)
n2

f =
21943

54
, (A.4)

where the numerical values refer to Nc = 3 and nf = 4.
The two-loop coefficient of the cusp anomalous dimension
has been known for a long time [33]. However, its three-
loop coefficient has only been calculated very recently by
Moch et al. [34]. This is a lucky coincidence, because that
calculation was done in a context not related to heavy-
quark physics. The results are

Γ0 = 4CF =
16
3
,

Γ1 = 8CF

[(
67
18

− π2

6

)
CA − 5

9
nf

]
≈ 42.7695 ,

Γ2 = 16CF

[(
245
24

− 67π2

54
+

11π4

180
+

11
6
ζ3

)
C2

A

+
(

− 209
108

+
5π2

27
− 7

3
ζ3

)
CA nf (A.5)

+
(

− 55
24

+ 2ζ3

)
CF nf − 1

27
n2

f

]
≈ 429.507 .

Although the two- and three-loop coefficients of the β
function and cusp anomalous dimension are large, the
perturbative expansion of the Sudakov exponent is ex-
tremely well behaved. This is illustrated in Fig. 3, which
shows the Sudakov exponents S(µh, µ) and S(µ0, µ) for
µh = mb = 4.7 GeV and µ0 = 1 GeV as a function of µ.
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Fig. 3. Sudakov exponents S(mb, µ) (black) and S(1 GeV, µ)
(gray) at next-to-next-to-leading order (solid), next-to-leading
order (dashed), and leading order (dash-dotted). The solid and
dashed curves are nearly indistinguishable

The two-loop coefficient of the anomalous dimension
γ entering the shape-function evolution kernel in (17) has
been calculated in [64]. We have found some mistakes in
the translation of the results for the two-loop graphs into
the expression for the anomalous dimension. The corrected
result is3

γ0 = −2CF = − 8
3
,

γ1 = −8CF

[(
− 37

108
− π2

144
+

9
4
ζ3 − κ

8

)
CA

−
(

1
54

+
π2

72

)
nf

]
≈ −66.7531 + 4κ , (A.6)

where κ = 0 under the assumption that the two-loop di-
agrams themselves were evaluated correctly in [64]. How-
ever, there is reason to believe that there might be an
additional error in this paper, giving rise to a non-zero
value κ = 4/3 [65] (see also Appendix B below), which we
adopt in our numerical analysis.

The two-loop anomalous dimension for the leading-
order SCET current operator in (13) has not yet been
computed directly. An analysis is in progress and has al-
ready led to a prediction for the terms of order CFnf [37].
The remaining terms can be deduced by noting that the
difference γJ ≡ γ′ − γ is the non-cusp part of the anoma-
lous dimension of the jet function [12], which is related
to the familiar jet function from deep-inelastic scattering.
We find

γJ
0 = −3CF ,

γJ
1 = CF

[(
− 3

2
+ 2π2 − 24ζ3

)
CF

+
(

− 3155
54

+
22π2

9
+ 40ζ3

)
CA (A.7)

+
(

247
27

− 4π2

9

)
nf

]
+ (7 − π2)CFβ0 ,

3 I amgrateful toG.Korchemsky for confirmingmy result [70].

where the terms in brackets in the expression for γJ
1 are

taken from [35], while the remainder in the last line is due
to the non-trivial normalization of the SCET jet function
in (9). Combining the results (A.6) and (A.7), we obtain

γ′
0 = −5CF = − 20

3
,

γ′
1 = −8CF

[(
3
16

− π2

4
+ 3ζ3

)
CF

+
(

1621
432

+
7π2

48
− 11

4
ζ3 − κ

8

)
CA (A.8)

−
(

125
216

+
π2

24

)
nf

]
≈ −36.9764 + 4κ .

Only the term proportional to nf in γ′
1 has so far been

checked by a direct calculation in SCET [37].

Appendix B: Perturbative expansion

In this work, we have presented for the first time the com-
plete RG-improved expression for theB → Xsγ decay rate,
in which all logarithms ln δ (with δ = ∆/mb) are resummed
at next-to-next-to-leading logarithmic order. In order to
simplify the comparison of our result with those of other
authors, we expand it in fixed-order perturbation theory
and list the resulting terms at order αs and α2

s . It suffices
to focus on the perturbative correction to the term multi-
plying the product m3

b m
2
b(µh) |C7γ(µh)|2, where mb is the

pole mass. We find

1 +CF
αs(mb)

4π

(
4 ln

mb

µh
− 2 ln2 δ − 7 ln δ − 5 − 4π2

3

)

+CF

(
αs(mb)

4π

)2

(B.1)

× [k4 ln4 δ + k3 ln3 δ + k2 ln2 δ + k1 ln δ + k0
]
+ . . . ,

where

k4 = 2CF , k3 = 14CF +
22
3
CA − 4

3
nf ,

k2 =
(
−8 ln

mb

µh
+

69
2

+
4π2

3

)
CF +

(
95
18

+
2π2

3

)
CA

− 13
9
nf ,

k1 =
(
−28 ln

mb

µh
+

67
2

+
20π2

3
− 8ζ3

)
CF (B.2)

+
(
2κ− 953

18
+

34π2

9
+ 4ζ3

)
CA +

(
85
9

− 4π2

9

)
nf .

These expressions are independent of the matching scales
µi and µ0, and they have the correct dependence on µh.
The constant k0 can only be obtained from a complete
calculation of O(α2

s ) corrections to the decay rate.
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Resummed expressions for the B → Xsγ photon spec-
trum with next-to-leading logarithmic accuracy have been
reported in [71] and [36]. In the first paper, expressions
for the coefficients k4 and k3 are derived, which agree with
our findings. In [36], Gardi has obtained a result for the
photon spectrum from which all four coefficients ki can
be extracted. By matching his result for k1 with ours, we
conclude that κ = 4/3.

Appendix C: Kinematic power corrections
for the average photon energy

The functions dij(δ) entering the expression for the average
photon energy in (49) are given by

d77(δ) =
(

8δ2 − 14δ3

3
+ δ4

)
ln δ +

7δ2

2
− 58δ3

9
+ 2δ4 ,

d88(δ) =
4
9

[
π2

6
− L2(1 − δ) +

(
δ +

δ2

4
+
δ3

6

)
ln δ

− δ − δ2

4
− 5δ3

36
+
δ4

8

]

+
8
9

(
ln
mb

ms
− 1
)[

ln(1 − δ) + δ +
δ2

4
+
δ3

6

]
,

d78(δ) =
8
3

[
π2

6
− L2(1 − δ) +

(
δ +

δ2

2

)
ln δ − δ

− 7δ2

8
+
δ3

6
− δ4

16

]
,

d11(δ) = − 8
9

∫ 1

0
dx (1 − x)(1 − xδ)2

∣∣∣∣ zx G
(x
z

)
+

1
2

∣∣∣∣
2

,

d17(δ) = −3d18(δ)

=
4
3

∫ 1

0
dxx(1 − xδ)2 Re

[
z

x
G
(x
z

)
+

1
2

]
, (C.1)

where xδ = max(x, 1−δ), z = (mc/mb)2, and the function
G(t) has been defined in (38).

Appendix D: Comment on BLM scale setting

Here we illustrate the simple fact that the BLM scale-
setting procedure [66] for multi-scale problems is more
complicated than in the familiar case with a single scale.
Let us, for simplicity, ignore RG resummation effects due
to anomalous dimensions and consider a physical quantity
A, whose perturbative expansion is given by the product of
two perturbative series at scales M and m, with M > m.
We write

A =
[
1 + c1 a(M) + (2β0c2 + c′2) a

2(M) + . . .
]

× [1 + d1 a(m) + (2β0d2 + d′
2) a

2(m) + . . .
]
, (D.1)

where a ≡ αs/(4π), and c(′)i , d(′)
i are numerical coefficients.

The BLM scales of the two series are

µhigh
BLM = M e−c2/c1 , µlow

BLM = me−d2/d1 . (D.2)

They are determined so as to absorb the O(α2
s ) terms mul-

tiplying β0 into the running coupling constants. Adopting
the BLM philosophy, we would conclude that perturbation
theory is well behaved as long as both µhigh

BLM and µlow
BLM are

in the perturbative regime.
Imagine now that we compute A in fixed-order pertur-

bation theory using a single coupling constant αs(µ). We
would obtain

A = 1 + (c1 + d1) a(µ)

+
[
2β0

(
c2 + d2 − c1 ln

M

µ
− d1 ln

m

µ

)

+(c′2 + d′
2 + c1d1)

]
a2(µ) + . . . , (D.3)

and the associated BLM scale would be

µavg
BLM = M

( m
M

)d1/(c1+d1)
exp
(

− c2 + d2

c1 + d1

)
. (D.4)

Obviously, (D.3) does not provide the same information as
(D.1), and in particular it does not allow us to compute
the BLM scales in (D.2). To this end we would need c2 and
d2 separately, not just their sum.

It is instructive to look at a couple of examples, where
the conclusions derived from (D.3) would differ strongly
from those derived from (D.1). Consider, for instance, a
situation where (c1 + d1) is accidentally small. Then the
BLM scale (D.4) is either very small or very large, whereas
the BLM scales in (D.2) could be close to the scales M
and m, respectively. BLM scale setting based on the fixed-
order calculation would then be totally misleading. Next,
consider the case where the coefficient of β0 in (D.3) is
small, for instance by a particular choice of µ. The fixed-
order calculation would lead us to conclude that BLM-
type corrections are small, whereas the BLM-type terms
in (D.1) could still be large. Finally, consider the (some-
what pathological) example where d1 
 c1 and d2 
 −c2
with γ = d2/d1 > 0. Then the “physical” BLM scales are
µhigh

BLM 
 eγM and µlow
BLM 
 e−γ m. If γ is large, perturba-

tion theory may be in trouble, since µlow
BLM may no longer

be in the perturbative regime. Nevertheless, the “average”
BLM scale µavg

BLM 
 √
Mm is large, and the fixed-order

calculation would thus indicate a well-behaved perturba-
tive expansion.
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